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ABSTRACT 

 
Since the tracking of moving targets is a fundamental concern in military and civilian applications, 

aerospace industries are always studying for exact, low-error, computationally light, and uncomplicated 
algorithms for target tracking. Nowadays, most modern military systems are equipped with numerous 

sensors. The perfect operation of such sensors helps to achieve target tracking. Due to the nature of the 

sensor system and the types of noises, one kind of sensor alone cannot be perfectly used in target 

tracking. Consequently, several different sensors are operated in new systems for tracking. 
The present study aims to explain the multiple tracking targets in MTI radar and its filtering with the 

Kalman model and IMM algorithms. Also, applied algorithms for tracking moving targets using phased 

array radar are discussed. Various algorithms are proposed in this field, including interacting multiple 
models (IMM), Kalman filter (KF), and extended Kalman filter (EKF). These simple and multi-rate 

algorithms are reviewed in detail. 
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INTRODUCTION 
 

Tracking means being aware of information about the change of position, velocity, and 

direction during different movement phases. Knowledge of the exact position of a target at a 

specific time is realized with electro-optical and radio wave (electromagnetic) methods and 

radars. The most useful radar for this purpose is the phased array radar, capable of accurately 

detecting the elevation angle, orientation, and height, as well as the distance information 

between the target and the antenna without mechanical rotation of the antenna. The role of 

phased array radars in the country's aerospace surveillance network to meet military and 

civilian needs is very prominent. To detect the current position and speed of the target, we need 

TMP UNIVERSAL JOURNAL OF RESEARCH AND REVIEW ARCHIVES 
 

VOLUME 3 │ISSUE 4│YEAR 2024│OCT-DEC 2024 

RECEIVED DATE ACCEPTED DATE PUBLISHED DATE 

23/10/2024 27/11/2024 23/12/2024 

Article Type: Research Article Available online: www.tmp.twistingmemoirs.com    ISSN 2583-7214 

http://www.tmp.twistingmemoirs.com/


EXPLANATION OF MULTIPLE TRACKING TARGETS IN MTI RADAR AND ITS FILTERING WITH KALMAN 

MODEL AND IMM ALGORITHM 

 

UJRRA│Volume 3│Issue 4│Oct-Dec 2024               419 

 

to track and predict the path. The main elements of any tracking system are data allocation, 

trajectory prediction, and filtering. 

 

The first and most famous application of MTT was the track-while scan (TWS) system 

described in Hovanssian's book [1]. The TWS system is a special sub-branch of the MTT 

system in which data is received in the form of a regular time sequence through a regular sensor 

sweep. For common TWS systems, the search and update operations are performed 

simultaneously. At a constant rate, a sensor monitors new targets and tracks targets with the 

same observation time, the same detection threshold, and the same waveform. TWS systems 

only retain traces within the system's pre-defined search range. 

 

In most modern systems, several different sensors are used for tracking. Radar systems are used 

to accurately measure the angle and range of targets. However, they cannot measure the target 

angle with proper accuracy. On the other hand, infrared search and tracking (IRST) sensors can 

measure the angle of the target with high accuracy and determine the direction of the target 

completely. However, it is not easy to detect the target range for IRST. 

 

Providing a structure to integrate the information of these sensors facilitates the exact location 

of the target and also tracks the change of the target location. IRST emits infrared rays to search 

and track targets, such as jet planes and helicopters. IRST gains awareness of the environment 

with the vision of infrared rays. Such systems are passive and do not emit any radiation, unlike 

radar. The advantage of this method is not identifying the system itself. 

This study aims to address the practical algorithms of tracking moving targets using phased 

array radar. Various algorithms are proposed in this field, including interacting multiple models 

(IMM), Kalman filter (KF), and extended Kalman filter (EKF). These simple and multi-rate 

algorithms are reviewed in detail. 

 

Multiple tracking targets 

 

The main components of the MTT system based on TDS 

MTT system does not suffer from the limitations of TWS systems. For example, data can be 

received at irregular intervals. Traces can be kept even in unsearched areas to find new targets. 

Also, the observation time and detection threshold in these systems change adaptively. 

With the emergence of electronically scanned antenna or phased array antenna, new MTT 

systems have entered a new era of progress. Phased array radars can send the beam to any 

desired point without the inertia problem of mechanical moving antennas. This gives radars 

adaptive sampling. Therefore, the transition from search mode to find new targets to refresh 

view mode is done almost in real-time. Also, in this type of radar, the sampling time can be 

reduced to a few milliseconds. Therefore, phased array radars have the possibility of sampling 

at a very high rate. This gives the phased array radar the potential ability to track multiple 

targets. At the same time, the usual TWS systems use mechanically scanned antenna and are 

strongly affected by inertia. In addition, in phased array systems, the array can be divided into 

several sub-arrays and ∑ and ∆ signals can be used to measure the exact angular position of the 

target, similar to the mono pulse method. It is also possible to measure the exact angular 

position of the target by irradiating several beams consecutively through the canonical scan 

method. The use of the latter capability in the phased array system has led to the formation of 

the track during the scan algorithm [2]. In this research, the capabilities of this algorithm in 

tracking targets with high maneuverability have been investigated. 

Figure (1) represents the components of an MTT system. There is a significant overlap between 

the operations of these components. However, such a representation provides a simple division 

of MTT operations suitable for introducing this system. 
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Figure 1: The main components of an MTT system 

 

The processing loop of Figure (1) is executed repetitively by receiving data from the 

measurement block and processing the signal. As soon as the data is entered, data-tracking 

correspondence is done in two steps. First, through the Gating Test, a cursory allocation of data 

to reasonable tracks is done. Then the data allocation algorithm performs the final refinement 

and finally assigns data to each of the tracks. Unallocated data is nominated to form new 

potential tracks. The tracking management block decides about them. This block also decides 

whether to keep or delete a track based on the assumed quality of the tracks. After the data 

allocation stage, the address of the cell containing the target is determined. The radar can 

measure the precise angular position of the target by radiating several beams to the desired cell. 

After completing all these operations, the data is filtered and the next sampling time (for 

algorithms with adaptive sampling time) is determined. Then, the future position of the targets 

is estimated to form the gates around these positions. The time intervals between observations 

in non-array systems are fixed and predetermined. In this way, the processing loop is completed 

once. As soon as the data is entered, this loop is repeated recursively. Below the operational 

tasks of the blocks are examined in more detail. 

 

1. Input data 

It is assumed that the signal processing block performs the process of detecting the return signal 

of the targets and sends the resulting information to the display screen. As a result, bright spots 

appear on the screen. Some of the spots represent targets and the rest represent false alarms. 

To generate the input data, the radar grid screen is simulated and its information is stored in a 

matrix. The entries of this matrix are "0"s and "1"s. The values of "1" represent the presence 

of the target in the corresponding cells. Also, the value "0" represents the absence of the target 

in the corresponding cells. The simulation of the radar screen is done as follows. 

1. Cell dimensions are determined based on the power of resolution in coordinate directions. 

2. Cells containing the target are lost with probability DP1 . 

3. In cells without a target, a false alarm appears with probability FaP
. 

 

2. Gating 

Gating is the first stage of the data allocation algorithm. As soon as an observation is assigned 

to previously formed tracks or a new track, the following procedure for decision is realized. 

1. Refreshing the previous tracks. An observation may apply to the gate of one or more previous 

tracks. In this case, the desired observation is tracked as a candidate for allocation to it. 

2. Being a candidate for forming a new tracking. The observation received may not apply to 

any of the gates. In this case, the desired observation becomes a candidate for forming a new 

track. 

Figure (2) shows the gating process for two targets close to each other. At the same time, the 

gates of two targets close to each other may overlap. In general, gating is done in the form of 

the following steps. 

1. Estimating the target's next position. 

2. The formation of gates around the center of estimated points for the next position of the 

targets. The size of the gate is proportional to the result of the measurement error and the 
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estimation error. The bigger the errors, the bigger gates are selected, and vice versa. The 

geometric shape of the gates is also important. On the one hand, we want the data related to the 

desired tracking to fall inside the gate with a high probability. On the other hand, the size of 

the gate should be the smallest to prevent false processing and waste of radar resources. 

3. Checking the presence or absence of received data inside the gate. 

 
Figure 2: Gating two close targets 

 

Due to the high observation refresh rate and subsequently the low estimation error, a search is 

usually not performed in each refresh of phased array radars. As a result, the antenna is radiated 

in the estimated direction and the search process takes place in the range. Therefore, gating is 

done on the range. This reduces the tracking load in multi-operational phased array radars. 

 

3. Data allocation and accurate positioning 

After gating, the data allocation operator performs the final data-tracking correspondence. If 

there is only one observation at the gate of a track, data allocation is very simple. For distant 

targets, it is not easy to make a decision. Several observations may be placed in the gate of one 

track, or one observation may apply to the gate of several tracks. In such situations, there are 

two main solutions: 

1. Nearest neighbor approach. A maximum of one observation (the closest observation to the 

center of the gate) is used to refresh the tracking. The observations are assigned to the tracks 

in such a way that the sum of the distances of the assigned observations from the center of their 

corresponding gates is the smallest. 

2. All neighbors approach. All valid observations in the gate of a track are used to refresh that 

track. As a result, the center of gravity of all observations inside the gate is used to refresh the 

tracking. Observations close to the center of the gate with more weight and observations further 

away with less weight participate in the calculation of the center of gravity. For example, in 

Figure (2), the weight of O1 for refreshing T2 tracking is less than the weight of O2 and O3. 

In phased array radars, after determining the data allocation status, the exact position of the 

target can be measured with the help of the methods mentioned in the first section, and these 

accurate data can be used to refresh the tracking. 

 

4. Tracking management 

Observations not assigned to previous tracks can be used to create new tracks. Also, a special 

restriction can be applied that if an observation is placed in the gate of a track (even if the data 

allocation algorithm in the nearest neighbor method does not use this observation to regenerate 

its corresponding track), that observation is not used to create new tracks. Also, it is not possible 

to be sure with a single observation that the new target is within the search range of the system. 

This observation should be confirmed in subsequent scans. The reason is that there is a 

possibility that this observation is a false alarm. So it is necessary to confirm a received 
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observation at least once to form a new track based on this observation. Gate size and refresh 

time for this observation is a function of the accuracy of the initial observation. A simple and 

conventional method to stabilize the tracking is to assign M observations to the desired tracking 

in N times of scanning the search area. The commonly used tests are three observations out of 

four scans or three observations out of five scans. 

Unrefreshed tracks lose their quality and should be deleted. A simple method for this is to 

delete a track after scanning, provided that no observations are received to refresh the desired 

track. You can also use the method based on the time elapsed since the last refresh. 

 

5. Filtering 

Two major techniques for multiple tracking targets are linear techniques and non-linear 

techniques. Filters with constant coefficients (β-α and γ-β-α) and Kalman filter (KF) are 

grouped in the class of linear filters. Filters with fixed coefficients have fixed gain coefficients 

for different maneuvering conditions. Such coefficients are applied taking into account 

predetermined criteria. As a result, such filters have a simple computational structure and are 

useful in systems with limited radar resources dedicated to the filter block. On the contrary, the 

Kalman filter uses variable coefficients for the filter gain. Such coefficients are calculated 

adaptively for different maneuvering conditions. The most famous nonlinear technique used in 

MTT systems is the developed Kalman filter. This technique is used in case of non-linearity of 

the measurement process model or non-linearity of the target dynamic model. According to the 

above content, the block diagram of a data processing system can be represented in Figure (3). 

 

 
Figure 3: Block diagram of TWS tracking loop [3] 

 

Another important issue in multiple tracking targets is the selection of the coordinate device 

and state vector in this device. Also, splitting and decomposing a track into one-dimensional 

tracks along the coordinate components is one of the prominent issues in multiple tracking 

targets. Decomposing a multi-dimensional track and turning it into several one-dimensional 

tracks performs the necessary calculations on scalars instead of matrices and leads to significant 

savings in the number of necessary calculations [4]. 

Each of the above techniques can be used with fixed or variable sampling time. The variable 

sampling time is specific to phased array systems. Before describing the above filters, 

estimation methods are discussed as the basic principles of filters. 

 

6. Estimation 

This section deals with the estimation of dynamic systems and the study of their formulas in 
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discrete time. Estimation techniques are divided into Bayesian and non-Bayesian. Statistical 

techniques are used both for non-Bayesian methods such as maximum likelihood (ML) and for 

simple Bayesian methods. In certain circumstances, they may even produce similar results. In 

Bayes’s estimation, it is assumed that the unknown parameters have a posterior distribution. 

A common method in state estimation is the least squares (LS) method, which focuses on 

minimizing the mean squared error according to the following formula. 

 

2

1

arg min ( ( ))
t

LS

i
x

i

x y h x


 
 

(1) 

This concept is realized for random parameters by minimizing the desired value in the 

observations . 

 2argmin ( ) |MMSE

t
x

x E x x Y 
 

(2) 

This relation is known as minimum mean square error (MMSE). It can be easily shown that 

the above relation is calculated from the following conditional expectation. 

 | ( | )MMSE

t t tx E X Y xp x y dx    
According to Bar-Shalom (1988) [5] if the conditional expectation is expressed in differential 

form, its derivative is calculated based on equation (3): 

   2( ) | 2( | ) 0t tE x x Y x E x Y
x


   

  

(3) 

Maximum likelihood (ML) is a statistical method also known as the general likelihood 

function. The estimation is considered the maximum likelihood ratio. The problem of 

estimating parameters and random states of a noise system has been studied by researchers for 

a long time. The general theory for non-linear filtering with non-Gaussian noise as well as a 

comparison of the linear and non-linear form of Bayes theorem is discussed in Jazwinski (1970) 

[3]. 

 

7. β-α filter 

 

The β-α filter assumes a constant speed maneuver for the desired target. This assumption holds 

even for accelerated targets, as long as the sampling time is small enough. The β-α filter is 

defined by the following return relations: 
k)]1,(kx1)α[z(kk)1,(kx1)k1,(kx  ˆˆˆ

 
(4) 

k)]1,(kx1)[z(k
qT

β
k)(k,v1)k1,(kv  ˆˆˆ

 

(5) 

k)(k,vTk)(k,xk)1,(kx ˆˆˆ 
 

(6) 

where α and β are constant gains of the filter. z(k+1) is the received observation at the nth 

moment and T is the time interval between successive refreshes. The q parameter is equal to 1 

in normal conditions. However, at the time of no data finding, q is the number of scans 

performed after receiving the last observation. The initial conditions for these filters are set as 

follows. 
z(1)(2,1)x(1,1)x  ˆˆ

 
(7) 
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(9) 

 

8. Infrared detectors 

 

After the emergence of solid-state technology, infrared sensors entered a new era. In reference 

books, infrared detectors are classified in different ways, such as fast and slow detectors, high-

power and low-power detectors, detectors operating in time and frequency space, and photonic 

and thermal detectors. 

 
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The first type of infrared system was a single-element system equipped with a mechanical 

scanner. This system monitors the desired target and shows a light spot. Usually, the detectors 

used in this type of system are quantum detectors in the range of 3-5 micrometers. According 

to the type of detector used in these systems, the image is formed as a light spot from the target. 

The detector observes a point of the target due to the presence of the emission source. This 

point is projected by the searcher's optics on an array and the scanning system sends orientation 

information to the control circuits. Until now, various search engines have been designed and 

built with this technology. Today, point infrared detectors are used in tactical missiles. As a 

result, to overcome the problem of false targets, it is very important to optimize the 

characteristics of the detector. Among the point infrared searchers used in missiles, Tow anti-

armor missiles or Stinger anti-aircraft missiles can be mentioned. 

It is necessary to be very careful in the construction of the elements of this type of detector to 

obtain a uniform and homogeneous response. Also, the electronic balance must be achieved 

artificially. To obtain a wider field of view with maximum spatial resolution, the number of 

FPA elements should be increased. Also, the system should be designed in such a way that 

large deviant signals from the background can be detected. 

 

9. Kalman filter 

 

Kalman filter is the most common adaptive filter for estimating time-varying parameters in 

tracking problems. This filter is a linear estimator grouped in the class of Bayesian estimators. 

Unlike classical estimators, Bayesian estimators have some initial information about the 

desired parameter and estimate the desired parameter by having previous information. The 

important thing about Bayesian estimators is that the improvement of this category of 

estimators compared to classical estimators relies on the accuracy of previous information. The 

more accurate the previous information is, the more efficient the estimator will be. On the 

contrary, if the previous information is inaccurate, not only the estimation quality does not 

improve, but the performance of Bayesian estimators becomes worse than classical estimators. 

In addition to the Kalman filter being optimal according to the least squares error, this filter 

also has other flexibility that makes its use in tracking systems inevitable. One of these 

capabilities is the calculation of the gain coefficient in an adaptable manner for different 

maneuvering conditions. The gain rate can be modified in the absence of data finding. The 

covariance matrix of the state vector is recursively calculated in each step. This matrix can be 

used in the stage of gating and data allocation. In the Kalman filter, the effect of data 

misallocations can be partially compensated. 

In the Kalman filter, the first-order Markov process is used to model the movement of the target 

[6]. 
( 1) ( ) ( ) ( ) 0,1,x k F k x k v k             k    

 
(1-3) 

where x(k) is the state vector of the system and v(k) represents the noise vector of the system, 

which is used to include the uncertainty of the model. The components of the vector v(k) are a 

sequence of the normal process with zero mean and variance 
2

vσ . The covariance matrix v(k) 

is a positive definite matrix and each eigenvalue is proportional to the uncertainty value of the 

corresponding parameter. 

Figure (4) shows the Kalman filter processing loop. According to this figure, the recursive 

relations of the covariance matrix are independent of the observations and independent of the 

system state. Therefore, they can be calculated offline. This is vital in reducing the computing 

load of the processor. Instead of calculating the covariance matrix in each step, the value stored 

in the memory is used, which significantly reduces the amount of calculations. 
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Figure 4: Block diagram of Kalman filter 

 

Consistency for the Kalman filter is defined as the accuracy of the assumed dynamic model. In 

case of lack of accuracy, the Kalman filter model does not provide a correct estimate of the 

state vector of the system. If the system model is accurate and the linear normal assumption 

applies, the conditional distribution x(k) is as follows. 

ˆ[ ( ) | ] [ ( ); ( , ), ( , )]kp x k Z x k x k k P k kN
 

(10) 

The system model includes the dynamic equation of the system, the measurement equation, 

and the statistical characteristics of the noises appearing in the equations. If all parameters are 

accurately modeled, Equation (11) is completely accurate. However, the purpose of 

consistency discussion is to know to what extent the assumed model is acceptable. 

The Kalman filter consistency test is based on the fact that under the assumption of linear 

normality, the normalized error of estimate square (NEES) follows a Chi-squared distribution 

with nx degrees of freedom. Therefore, we have: 
1[ ( , ) ( , ) ( , )] xE x k k P k k x k k n 

 
(11) 

The initial configuration plays a vital role in the Kalman filter. The initial covariance matrix 

should reflect the amount of error in the initial state vector without bias. Otherwise, the Kalman 

filter does not give the correct weight to the initial values in estimating the parameters. For 

example, if the initial value is not very accurate and the initial covariance matrix is very small, 

the filter assigns more weight to the initial value and the effect of this inaccurate initial value 

remains for a long time. This may lead to filter divergence. 

 

1. Modeling the kinematic equations of motion 

Due to the discrete nature of observations in phased array radars, it is necessary to model the 

equations of motion discretely in time. Commonly used models are constant velocity and 

constant acceleration models. In the constant velocity model, the movement acceleration is 

modeled as a white random process. However, in the constant acceleration model, the rate of 

change of acceleration (Jerk) is assumed to be a white process. In this model, the movement 
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acceleration follows a Wiener process. One of the important points in the implementation of 

tracking systems is the dynamic model selected for the targets. For example, tracking a ballistic 

missile requires its dynamic models, which are different from satellite dynamic models. Fighter 

planes with very high maneuverability require different dynamic models from larger planes 

(for example, cargo or passenger planes). Commercial and passenger airplanes generally 

require simpler models due to very little maneuverability [7, 8]. 

Most of the extended models, especially 2D and 3D models, are suitable for aircraft, although 

they can be used for many other purposes. Many such aircraft models are accurate, but most 

clearly ignore the effects of wind. There are a significant number of dynamic models for 

ballistic targets (such as ballistic missiles) and they are reviewed in [9]. The studies conducted 

in [9, 10] show that few dynamic models have been proposed for applications such as 

submarines, ships, and land targets. 

 

The constant velocity model is a second-order model which is expressed by the following 

relation. 
(k 1) (k) v(k)  x Fx Γ

 
(12) 

where F is the transition matrix of the system state, which is compiled as follows. 











10

T1
F

 

(13) 

where T is a vector of size nx as noise gain. Also, the scalar v(k) is a white sequence with zero 

mean and variance 
2

vσ according to the following relation. 

  2

vkjσδv(k)v(j)E 
 

(14) 

According to the last equations, in the second-order model with constant velocity, the target 

suffers a constant acceleration in each sampling interval. This acceleration is assumed to be 

independent from one interval to another. 

The constant acceleration model is defined similarly to the constant velocity model in Equation 

(14). In this model, v(k) represents the acceleration change rate (Jerk). The state transfer and 

noise gain matrices for this model are compiled as follows. 
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and 


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
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(16) 

The variance matrix Q is calculated as follows. 
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(17) 

 

2. Extended Kalman Filter 

 

The EKF filter is obtained based on the linearization of f and h functions around the last 

estimation point. Linearization of Equation (20) leads to the following relation. 

(k)(k,k)]ˆ(k)(k)[(k,k)]ˆf[k,1)(k vHOTxxfxx x 
 

(18) 

where 
(k)xf

 is the Jacobian of vector f calculated at the last estimation point. 

Also, HOT is an abbreviation for higher-order terms. Jacobian vector f is obtained according 

to the following relation. 

x
f

ff xxx 


  Δ  (k,x)']'|[Δ(k) (k,k)ˆx
 

(19) 
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By taking the conditional mean from Equation (4-66) and removing the high-order terms 

(HOT), the next state is calculated. 
(k,k)]ˆ[k,1,k)(kˆ xfx   

(20) 

The residual vector (error vector) is calculated from the difference of Equations (3-66) and (3-

68). 

(k)(k,k)~(k)1,k)(k~ vHOTxfx x 
 

(21) 

The prediction covariance matrix is calculated from the above relation as follows. 

(k)(k)'(k,k)(k)1,k)'](k~1,k)(k~E[1,k)(k QfPfxxP xx 
 

(22) 

where the high-order terms (HOT) are ignored. 

Similarly, we convert Equation (21) into a linear equation around the last estimation point. 

1)(k(k,k)]ˆ(k)(k)[(k,k)]ˆ[k,1)(k  wHOTxxhxhz x  
(23) 

The prediction of the next observation for moment k+1 is obtained by using the conditional 

mean of the above relation and removing the high-order terms (HOT). 

(k,k)]ˆ[k,]1)|(kE[1)(kˆ xhZzz
k   

(24) 

The refresh vector can be calculated using the difference of Relations (23) and (24). 

1)(k(k,k)~(k)1)(k  wHOTxhv x  
(25) 

By ignoring the HOT term, the refresh covariance matrix is calculated as follows. 

1)(k(k)'(k,k)(k)1)'](k1)(kE[1)(k  RhPhvvS xx  
(26) 

According to Relations (25), (26), the relations of the prediction covariance matrix and the 

refresh covariance matrix of the EKF filter are similar to the corresponding relations in the 

linear Kalman filter with a difference that the Jacobian matrices 
(k)xf

and 
(k)xh

play the role of 

the state transfer matrix and the measurement matrix, respectively.  
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Figure 5: Extended Kalman filter (EKF) processing algorithm 

 

3. Algorithm of interacting multiple models 

In 1988, H.A.P.Blom and Y.Bar-Shalom [11] invented interacting multiple models (IMM) as 

the most effective method for estimating hybrid systems. A hybrid system is appropriately 

described by continuous values of the state space and a set of system states. State change or 

switching between different models is formed randomly. The optimal method for estimating 

hybrid systems is currently in theory and continuously increases exponentially with time, so it 

cannot be implemented in practice. Suppose that in the first step of estimating a hybrid system, 

the system can choose one of N specific models randomly. In the first step, we can create a 

suitable adaptation using N filters. In the second step, the system can switch to N other states. 

To have an optimal estimate, we must consider all the records. So, in the second step, the 
2N

filters should be used due to the branching of each of the N models into N other models. In the 

same way, 
3N and 

4N filters should be applied for estimation in the third and fourth steps 

respectively. In [11], a scheduled cycle is introduced to adjust the exponential increase of the 

number of filters or hypotheses concerning time. As a result, only hypothesis N of the model 

is considered in each step [11 and 12]. 

According to Figure (6), the output of the whole system is equal to the weighted sum of the 

output of all filters. Each filter has a large or small effect on the output of the whole algorithm 

depending on the size f the corresponding weight. In simpler words, these weights can be 

converted into the probability of occurrence of the corresponding state in the hybrid system. 

The state corresponding to the larger weight at a particular moment indicates the possibility of 
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this state being dominant over the hybrid system at a particular moment. If the IMM algorithm 

is used to track the maneuvering target, the maneuvering target is the hybrid system itself, and 

the state variables of this system are the position and velocity of the target. During the 

maneuver, target acceleration is also added to other parameters as a state variable. 

Therefore, the IMM algorithm can be implemented with two Kalman filters (a filter 

corresponding to constant acceleration dynamics and a filter corresponding to variable 

acceleration dynamics) to effectively track the maneuvering target. Figure (7) represents the 

IMM algorithm for n filters. 

 

 
Figure 6: Schematic of IMM algorithm with two filters (two dynamic models) 

 
Figure 7: IMM algorithm for n filters 

 
 

CONCLUSION 

 
Today, advanced military systems are equipped with various sensors. In the case of unflawed 

and perfect sensor operation, target tracking can be done with simple geometry. In general, 

sensors are imperfect and their measurements are corrupted by noise. In addition, a single 
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sensor may not be able to provide all information about the target. For this reason, filters and 

multiple sensors are used to enhance target-tracking capabilities. Radar data can measure range 

with good resolution. Although radar data provides enough information for target tracking, 

angular measurements (horizontal and vertical angle) of radars are not very accurate. On the 

other hand, IRST sensor data can measure the horizontal and vertical angles with good 

resolution. Although IRST can show the direction of the target with very high accuracy, it 

cannot identify its location due to the lack of range measurement. 

The IMM algorithm has several advantages, such as estimating the state of a dynamic system 

with several behavioral states, switching from one state to another, and a filter with variable 

bandwidth. This feature enables IMM to track maneuvering targets. In the algorithm, a good 

tradeoff between complexity and efficiency has been established. The computational load 

required for the algorithm is almost linear according to the size of the problem (that is, the 

number of models). At the same time, its efficiency is the same as algorithms with quadratic 

nonlinear complexity according to the number of models. For problems such as tracking, the 

interactive feature in the IMM algorithm is very useful. The reason is that this algorithm works 

almost the same as the Bayesian filter. IMM estimator is one of the most effective and simple 

methods for estimation in hybrid systems. As a result, it is suitable for tracking multi-target 

and multi-sensor systems. The IMM procedure is based on solid and stable principles, which 

is very suitable for the problems of tracking targets while maneuvering. It is also considered a 

recursive and modular algorithm that does not need additional circuits to register maneuvers. 
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